Manipulative Mathematics

Using Manipulatives to Promote Understanding of Math Concepts

Visualizing Fractions

Model Fractions Fractions Equivalent to One Model Improper Fractions and Mixed Numbers Model Equivalent Fractions

> Manipulatives used: Fraction circles Fraction tiles

www.foundationsofalgebra.com

1

Manipulative Mathematics Model Fractions

Instructor Page

Resources Needed:

Each student needs a worksheet, a set of fractions tiles, and a set of fraction circles.

Background Information:

Fractions are a very abstract idea to many students at this level. Students don't have a concrete model of fractions they can relate to, and so working with fractions becomes mere manipulation of symbols for no apparent reason. This activity helps students make the connection between a concrete fraction and the abstract concepts and symbols. The activity takes very little time, but the rewards are great.

Directions:

- In this quick activity the meaning of the numerator and denominator in a fraction are shown to correspond to parts of a whole. Students can complete this worksheet without using manipulatives. It is best done individually.
- Give each student a worksheet.
- Demonstrate for the class one "set" of fraction circles and one "set" of fraction tiles,

(i.e., 3 thirds, 4 fourths, etc.). Show and explain how, for example, $\frac{1}{2}$ means 1 of the

3 equal pieces that together make one whole, and $\frac{2}{3}$ represents 2 of those pieces.

Emphasize the meaning of fractions as parts of a whole.

- Have the students proceed through the worksheet on their own.
- When most students seem to have completed the worksheet, bring the class together again for discussion.
- Students can get additional practice naming fractions online at the National Library of Virtual Manipulatives website:
 - Fractions parts of a whole <u>http://nlvm.usu.edu/en/nav/frames_asid_102_g_2_t_1.html?from=topic_t_1.html</u>
 - Fractions naming <u>http://nlvm.usu.edu/en/nav/frames_asid_104_g_1_t_1.html?from=topic_t_1.html</u>
 Fraction pieces
 - http://nlvm.usu.edu/en/nav/frames_asid_274_g_3_t_1.html?open=activities&from =topic_t_1.html

Manipulative Mathematics **Model Fractions**

Name

Fraction:

A fraction is written $\frac{a}{b}$

a is the **numerator** and b is the **denominator**.

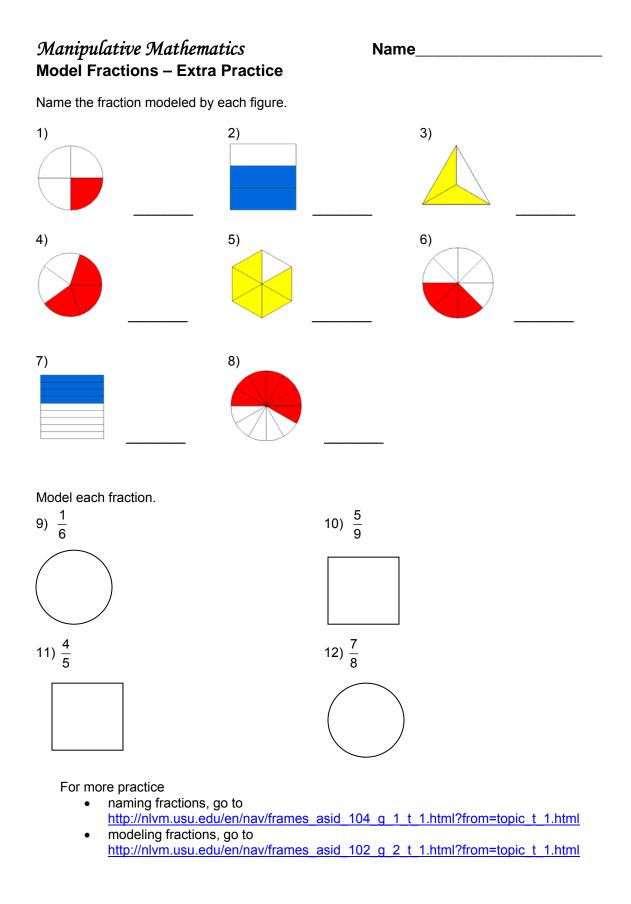
Fractions are a way to represent parts of a whole. The fraction $\frac{1}{3}$ means that one whole has been divided into 3 equal parts and each part is one of the three equal parts.

- 1) This circle that has been divided into 3 equal parts. Label each part $\frac{1}{3}$.
- 2) What does the fraction $\frac{2}{3}$ represent? This means the whole has been divided into 3 equal parts, and $\frac{2}{3}$ represents two of those three parts.

Shade two out of the three parts of this circle to represent $\frac{2}{3}$.

3) What fraction of this circle is shaded? (a) How many parts are shaded?

- (b) How many equal parts are there?
- (c) The fraction of the circle that is shaded is \square
- 4) What fraction of this square is shaded? (a) How many parts are shaded?
 - (b) How many equal parts are there?
 - (c) The fraction of the square that is shaded is \square
- 5) To shade $\frac{3}{4}$ of the circle, shade _____ out of the _____ parts. Shade $\frac{3}{4}$.



\square	$\overline{}$
(
\sim	

Manipulative Mathematics Visualizing Fractions packet www.foundationsofalgebra.com

Instructor Page

Manipulative Mathematics Fractions Equivalent to One

Resources Needed:

Each student needs a worksheet and a set of fractions tiles.

Background Information:

Fractions are a very abstract idea to many students at this level. Students don't have a concrete model of fractions they can relate to, and so working with fractions becomes mere manipulation of symbols for no apparent reason. This activity helps students make the connection between a concrete fraction and the abstract concepts and symbols. The activity takes very little time, but the rewards are great.

Directions:

- In this activity students use fraction tiles to model fractions equivalent to one. Students may work individually or with partners.
- Give each student a set of fraction tiles and a worksheet.
- Demonstrate for the class how to put all the fraction tiles together to make a rectangle of width one.

- Have the students proceed through the worksheet on their own or in their groups. Some students may need clarification when they attempt to answer the questions.
- When most students seem to have completed the worksheet, bring the class together again for discussion. You may want to ask the students for their answers to Exercise 5 and then list the 'patterns' they described in Exercise 6.
- The interactive website <u>http://www.mathsisfun.com/numbers/fraction-number-</u> <u>line.html</u> shows a set of fraction tiles. Students can use it to verify, for example, that

it takes fourteen $\frac{1}{14}$ pieces to make one.

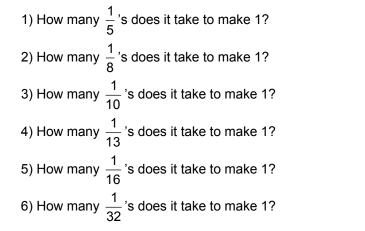
www.foundationsofalgebra.com

Manipulative Mathematics Fractions Equivalent to One

Name_____

Fractions are often shown as parts of rectangles. Here, the whole is one long rectangle.

				1		
		1 2			1 2	
	$\frac{1}{3}$			1 3		$\frac{1}{3}$
	<u>1</u> 4		1 4	<u>1</u> 4		<u>1</u> 4
<u>1</u> 6	-	1	1 6	1 - 6	<u>1</u> 6	<u>1</u> 6

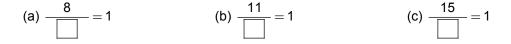

Set up your fraction tiles as shown in the diagram above.

1) ł	How many of the $\frac{1}{2}$ tiles does it take to make 1	whole tile?
	(a) It takeshalves to make a whole.	(b) Two out of two is 1 whole. $\frac{2}{2} = \underline{\qquad}$.
2)	How many of the $\frac{1}{3}$ tiles does it take to make 1	I whole tile?
	(a) It takes thirds to make a whole.	(b) Three out of three is 1 whole. $\frac{3}{3} = $
3)	How many of the $\frac{1}{4}$ tiles does it take to make 1	whole tile?
	(a) It takesfourths to make 1 whole.	(b) Four out of four is 1 whole. $\frac{4}{4} = $
4)	How many of the $\frac{1}{6}$ tiles does it take to make 1	
	(a) It takes sixths.	(b) Six out of six is 1 whole. $\frac{6}{6} = \underline{\qquad}$.
5)	What if the whole was divided into 24 equal part this and it is too many to draw easily, but try to v	
	(a) How many $\frac{1}{24}$'s does it take to make 1?	(b) $\frac{1}{24} = 1$
6)	Do you see any pattern here? Describe the patt	ern you see.

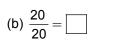
Manipulative MathematicsNameFractions Equivalent to One – Extra Practice

Use fraction tiles to answer these exercises.

You may want to use virtual fraction tiles on the interactive website http://www.mathsisfun.com/numbers/fraction-number-line.html.



7) Fill in each numerator.



8) Fill in each denominator.

9) Fill in the missing part.

7

(c) $\frac{25}{1} = 1$

Manipulative Mathematics Visualizing Fractions packet

Instructor Page

Manipulative Mathematics Model Improper Fractions and Mixed Numbers

Resources Needed:

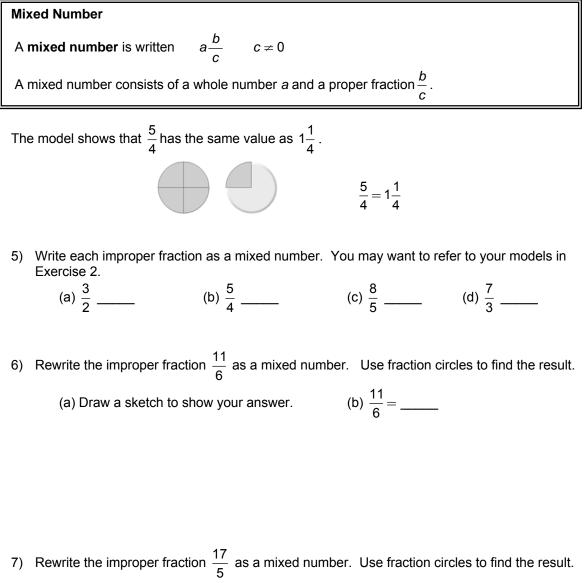
Each student needs a worksheet and a set of fraction circles.

Background Information:

Fractions are a very abstract idea to many students at this level. Students don't have a concrete model of fractions they can relate to, and so working with fractions becomes mere manipulation of symbols for no apparent reason. These activities help students make the connection between a concrete fraction and the abstract concepts and symbols. The activities takes very little time, but the rewards are great.

Directions:

- In this activity students use fraction circles to model improper fractions and mixed numbers. Students should work in pairs, so they can model fractions larger than one.
- Give each student a set of fraction circles and a worksheet. Even though they work with a partner, all students should complete their own worksheets.
- Have the students work through the worksheet with their partners. Some students may need a hint to draw a third circle for question 2d.
- When most students seem to have completed the worksheet, bring the class together again for discussion. You may want to have the students share their answers to questions 8 and 11.
- Students can get more practice modeling improper fractions and visualizing how to convert between improper fractions and mixed numbers at the National Library of Virtual Manipulatives website.
 - Fraction pieces <u>http://nlvm.usu.edu/en/nav/frames_asid_274_g_2_t_1.html?open=activities&from</u> <u>=topic_t_1.html</u>


<i>Manipulative Mathema</i> Model Improper Fraction		Name nbers		
 Use fraction circles to make show your result. 	e wholes, if possible, v	with the following piece	es. Draw a sketch to	
(a) 2 halves	(b) 6 sixths	(c) 4 fourths	(d) 5 fifths	
 Use fraction circles to make show your result. (a) 3 halves 	e wholes, if possible, v	with the following piece (b) 5 fourths	es. Draw a sketch to	
(c) 8 fifths		(d) 7 thirds		
When a fraction has the numerator smaller than the denominator, it is called a proper fraction. Its value is less than one. Fractions like $\frac{1}{2}$, $\frac{3}{7}$, and $\frac{11}{18}$ are proper fractions. A fraction like $\frac{5}{4}$, $\frac{3}{2}$, $\frac{8}{5}$, or $\frac{7}{3}$ is called an improper fraction. Its numerator is greater than its denominator. Its value is greater than one.				
Proper and Improper FractionThe fraction $\frac{a}{b}$ is:properif $a < b$	(<i>b</i> ≠ 0)	if a≥b		
 Write as improper fractions (a) 3 halves 		(c) 8 fifths	(d) 7 thirds	

Manipulative Mathematics Visualizing Fractions packet 9

www.foundationsofalgebra.com

4) Look back at your models in Exercise 2 and the improper fractions in Exercise 3. Which improper fraction in Exercise 3 could also be written as $1\frac{1}{4}$?

The number $1\frac{1}{4}$ called a **mixed number**; it consists of a whole number and a proper fraction.

(a) Draw a sketch to show your answer. (b) $\frac{17}{5} =$ _____

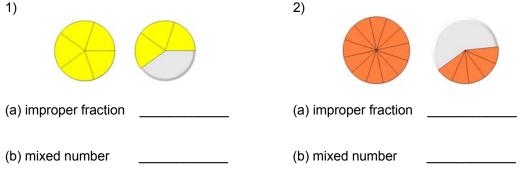
Manipulative Mathematics Visualizing Fractions packet

- 8) Explain how you convert an improper fraction as a mixed number.
- 9) Rewrite the mixed number $1\frac{2}{3}$ as an improper fraction.
 - (a) Draw a sketch to show your answer.

(b)
$$1\frac{2}{3} =$$

- 10) Rewrite the mixed number $2\frac{1}{4}$ as an improper fraction.
 - (a) Draw a sketch to show your answer.

(b)
$$2\frac{1}{4} =$$


11) Explain how you convert a mixed number to an improper fraction.

Manipulative MathematicsName_____Model Improper Fractions and Mixed Numbers – Extra Practice

Use 2 sets of fraction circles to do these exercises.

You may want to use the fraction circles on the interactive website http://nlvm.usu.edu/en/nav/frames asid 274 g 2 t 1.html?open=activities&from=topic t 1.html.

Name each improper fraction. Then write each improper fraction as a mixed number.

Draw a figure to model the following improper fractions. Then write each as a mixed number.

Improper fraction	Model	Mixed number
3) 7 /4		$\frac{7}{4} =$
4) 9 5		$\frac{9}{5} =$
5) 17 10		$\frac{17}{10} =$
6) $\frac{10}{3}$		$\frac{10}{3} =$

Mixed number	Model	Improper fraction
7) 1 ² /5		$1\frac{2}{5} =$
8) 1 ¹ / ₆		$1\frac{1}{6} =$
9) 1 <mark>7</mark> 12		$1\frac{7}{12} =$
10) $2\frac{3}{4}$		$2\frac{3}{4} =$

Draw a figure to model the following mixed numbers. Then write each as an improper fraction.

Manipulative Mathematics Model Equivalent Fractions

Resources Needed:

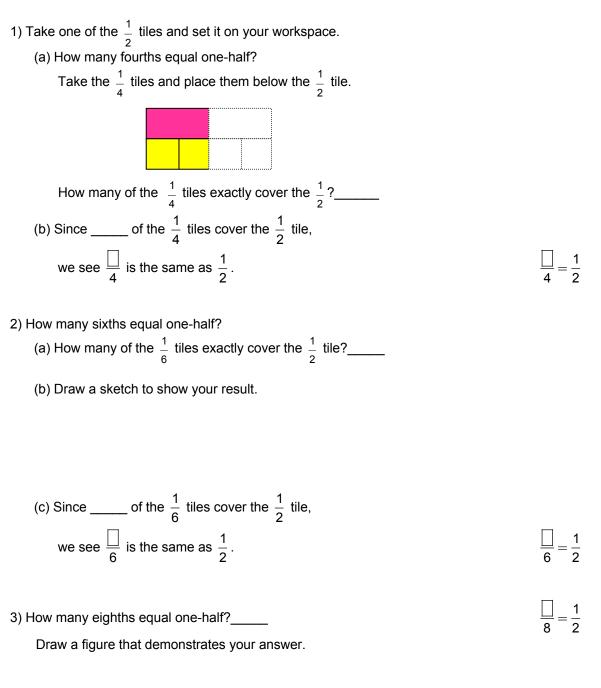
Each student needs a worksheet and a set of fractions tiles.

Background Information:

Many students that take this course have never really understood fractions. Often they just manipulate the symbols without any thoughts about their meaning, and as a result are just as likely to apply an incorrect procedure as the correct one. This activity helps students understand the concept of equivalent fractions and the procedure to find them; students will see how the abstract concepts and symbols relate to the concrete fraction tiles. This worksheet takes very little time, but the rewards are great.

Directions:

- Students may do this activity individually or in a small group.
- Give each student a set of fraction tiles and a worksheet. Be sure they all have an adequate amount of clear desk space to set out their fraction tiles.
- Guide them through the first part of the activity finding how many fourths equal onehalf. You may wish to use fraction tiles with a projector to demonstrate what it means to "exactly cover" the one-half tile.
- Let students continue with the worksheet on their own or in their groups.
- Discussion at the end will help reinforce the concepts. You may want to have students explain their answers to Exercises 6, 9, 13, and 14.
- The interactive website <u>http://www.mathsisfun.com/numbers/fraction-number-line.html</u> shows a set of fraction tiles. Students drag a line across the set of tiles to see all the equivalent fractions.


Manipulative Mathematics Model Equivalent Fractions

Name_____

Equivalent Fractions

Equivalent fractions have the same value.

Use fraction tiles to do the following activity:

Manipulative Mathematics Visualizing Fractions packet

4) How many tenths equal one-half? Draw a figure that demonstrates your answer.	$\frac{\Box}{10} = \frac{1}{2}$
5) How many twelfths equal one-half? Draw a figure that demonstrates your answer	$\frac{\boxed{12}}{12} = \frac{1}{2}$
6) Suppose you had bars marked $\frac{1}{20}$. How many of them would it take to equal one-half?	$\frac{\Box}{20} = \frac{1}{2}$
 Take one of the ¹/₃ bars and set it on your workspace. 7) How many sixths equal one-third? Draw a figure that demonstrates your answer. 	$\frac{\Box}{6} = \frac{1}{3}$
8) How many twelfths equal one-third? Draw a figure that demonstrates your answer.	$\frac{1}{12} = \frac{1}{3}$
9) Suppose you had tiles marked $\frac{1}{30}$. How many of them would it take to equal one-third?	$\frac{}{30} = \frac{1}{3}$
10) How many sixths equal two-thirds? Draw a figure that demonstrates your answer.	$\frac{}{6} = \frac{2}{3}$

11) How many eighths equal three-fourths? Draw a figure that demonstrates your answer.	$\frac{1}{8} = \frac{3}{4}$
12) How many twelfths equal three-fourths? Draw a figure that demonstrates your answer.	$\frac{1}{12} = \frac{3}{4}$
 13) Suppose you had tiles marked ¹/₃₀. (a) How many of them would it take to equal seven-tenths? (b) Explain how you got your answer. 	$\frac{\boxed{30}}{30} = \frac{7}{10}$

14) Can you use twelfths to make a fraction equivalent to three-fifths? ______ Explain your reasoning.

Manipulative Mathematics Nodel Equivalent Fractions – Extra Practice	lame
Use fraction tiles to do these exercises. You may want to u interactive website http://www.mathsisfun.com/numbers/fra	
1) How many eighths equal one-fourth?	$\frac{1}{2} = \frac{1}{4}$
Draw a figure that demonstrates your answer.	0 4
2) How many twelfths equal one-third?	$\frac{\boxed{1}}{12} = \frac{1}{3}$
Draw a figure that demonstrates your answer.	
3) How many tenths equal four-fifths?	$\frac{\boxed{}}{10} = \frac{4}{5}$
Draw a figure that demonstrates your answer.	
4) How many sixteenths equal three-fourths?	$\frac{\boxed{1}}{16} = \frac{3}{4}$
Draw a figure that demonstrates your answer.	
5) How many fifteenths equal two-thirds?	$\frac{\boxed{1}}{15} = \frac{2}{3}$
Draw a figure that demonstrates your answer.	
6) How many fifteenths equal two-fifths?	$\frac{1}{15} = \frac{2}{5}$
Draw a figure that demonstrates your answer.	
7) How many twelfths equal six-eighths?	$\frac{1}{12} = \frac{6}{8}$
Draw a figure that demonstrates your answer.	12 8
8) How many twelfths equal six-ninths?	$\frac{1}{12} = \frac{6}{9}$
Draw a figure that demonstrates your answer.	
Manipulative Mathematics 18 Visualizing Fractions packet	www.foundationsofalgebra.com